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We study theoretically the photoelectron angular distributions (PADs) from two-color two-photon near-
threshold ionization of hydrogen and noble gas (He, Ne, and Ar) atoms by a combined action of femtosecond
extreme ultraviolet (EUV) and near-infrared (IR) laser pulses. By using second-order time-dependent perturbation
theory, we clarify how the two-photon ionization process depends on the EUV-IR pulse delay and how it is
connected to the interplay between resonant and nonresonant ionization paths. Furthermore, by solving the
time-dependent Schrödinger equation, we calculate the anisotropy parameters β2 and β4 as well as the amplitude
ratio and relative phase between partial waves characterizing the PADs. We show that, in general, these parameters
notably depend on the time delay between the EUV and IR pulses, except for He. This dependence is related to
the varying relative role of resonant and nonresonant paths of photoionization. Our numerical results for H, He,
Ne, and Ar show that the pulse-delay effect is more pronounced for p-shell ionization than for s-shell ionization.
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I. INTRODUCTION

Investigations of nonlinear (multiphoton) processes in the
extreme ultraviolet (EUV) and soft-x-ray energy range is
a quickly developing branch of photon-matter-interaction
studies. It has been strongly stimulated by the construction
and operation of EUV and x-ray free-electron lasers (FELs) as
well as by the progress in powerful laser physics which results
in the creation of photon sources based on high-harmonic
generation. Intense ultrashort photon pulses from FELs allows
one to investigate nonlinear EUV processes by using well
developed methods of photoelectron spectroscopy, including
measurements of photoelectron angular distributions (PADs),
which have proven to be a sensitive tool for studying the
dynamics of photoprocesses [1].

One of the most basic nonlinear processes is two-photon
single ionization (TPSI) of atoms where an atomic electron
is emitted by a simultaneous absorption of two photons.
TPSI (and multiphoton ionization more generally) has been
intensively investigated theoretically for decades (see, e.g.,
Refs. [2–17]) as well as experimentally since the advent of
high-harmonic sources and FELs [18–24]. Both the absolute
cross section of TPSI [25] and the angular distribution of
photoelectrons [26] have been recently measured for He.

One of the fundamental problems of TPSI is a relative
contribution of resonant and nonresonant (direct) ionization
mechanisms. Absorption of two photons involves intermediate
states of the system. In general, according to the rules of quan-
tum mechanics, one should take into account contributions of
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all excited intermediate states, both discrete and continuous.
In the resonance-enhanced case, i.e., if the photon energy
spectrum allows resonant excitation of one or more excited
states, the resonant-ionization process via resonant levels and
the nonresonant process via nonresonant intermediate levels
coexist [3,27,28]. For a sufficiently long pulse resonant with
an excited level, the contribution from the resonant process is
dominant, and the TPSI cross section can be calculated within
the two-step approach: excitation of the resonant state and its
subsequent ionization. If we use an ultrashort (femtosecond)
exciting pulse with a large bandwidth, on the other hand,
the copresence of resonant and nonresonant contributions
becomes a more complex problem.

It has recently been demonstrated theoretically [27,28] that
the angular distribution of photoelectrons in TPSI generated by
ultrashort EUV pulses changes with the pulse width, reflecting
the competition between resonant and nonresonant ionization
paths. Calculations for H and He atoms have shown that
the relative phase δ between S and D ionization channels
is distinct from the scattering phase shift difference and varies
with the pulse width, and that this variation is different for
different photon energies. This prediction has been confirmed
experimentally [26] for the case of He.

The above discussion, which originally concerns single-
color TPSI, is quite general and can also be extended to
two-color cases. Specifically, let us consider a combined
action of an EUV pulse from a FEL or high-harmonic source
and of a synchronized optical laser pulse. Such two-color
multiphoton ionization experiments have proved to be useful
for characterization of ultrashort EUV pulses as well as for
detailed investigations of ionization dynamics [29–33] (see
also the review in Ref. [34]). Here also the measurements
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of PADs provided deeper insights into the physics of the
photon-atom interaction [35–42]. One of the advantages of
the two-color investigation is that the two pulses can be
independently controlled; one has the possibility to vary the
frequency, duration, and polarization of the EUV and optical
pulses independently. This gives much more flexibility to the
experiment. One additional advantage is that, in two-color
experiments with ultrashort pulses, one can study the time
evolution of the ionization process by controlling the time
delay between the pulses.

Recently this additional degree of freedom has been used
to advantage in Ref. [43]. It was shown experimentally
that the PAD in two-color TPSI of Ne atoms is notably
different for temporally overlapping and nonoverlapping EUV
and IR pulses. The difference between these two extreme
cases clearly demonstrates that the PAD in TPSI strongly
depends on the time delay between the pulses. The corre-
sponding theoretical calculations agree with the measurements
and explain the dependence by the change in the relative
contribution of resonant and nonresonant ionization paths
[43].

In the present work we extend our previous works [26–
28,43] and investigate theoretically in more detail the pulse-
delay dependence of photoelectron energy spectra and angular
distributions, both energy resolved and integrated, in near-
threshold two-color TPSI, with a focus on resonant and
nonresonant contributions. We first describe two-color TPSI
with second-order time-dependent perturbation theory and
show how the interplay between the resonant and nonresonant
paths depends on the pulse delay. Then, we study the pulse-
delay effect for different target atoms (H, He, Ne, and Ar),
based on direct numerical solution of the time-dependent
Schrödinger equation (TDSE).

This paper is organized as follows: In the next section,
by using perturbation theory, we discuss the general idea of
the relationship between the pulse-delay dependence of the
final-state amplitude for two-color TPSI and the contribu-
tion of resonant and nonresonant ionization paths. We then
shortly describe the numerical methods used to solve TDSE
and calculate anisotropy parameters. In Sec. IV we present
and discuss the simulation results for H, He, Ne, and Ar
atoms. Our conclusions and outlook are presented in Sec. V.

II. ANALYSIS BASED ON PERTURBATION THEORY

To illustrate the main idea it is instructive to consider the
problem of TPSI within second-order time-dependent pertur-
bation theory. Generalizing the expression for the amplitude of
the two-photon transition presented in Ref. [44] to the case of
multiple intermediate levels, we can write the amplitude of the
final state f of the atom as (atomic units are used throughout
unless otherwise indicated):

cf = i
∑

α

μf αμαi

[
iπÊ (ωαi) Ê(ωf α)

+ Pr
∫ ∞

−∞

Ê(ω)Ê(ωf i − ω)

ωαi − ω
dω

]
, (1)

where μαi , etc., denote the dipole transition matrix element
between state i and α; i is the initial state, α are the intermediate
states [α should be taken as a collection of quantum numbers
that specify each energy eigenstate, e.g., α = (n,l,m) for
bound states and α = (ε,l,m) for continuum states for the
case of a hydrogen-like atom], ωαi = ωα − ωi , etc., Pr is the
Cauchy principal value, and Ê(ω) is the Fourier transform
of the electric field E(t) of the ionizing pulse. In principle,
the sum should be taken over all the bound and continuum
intermediate states α. The first and second terms of Eq. (1) can
be interpreted as the resonant (or two-step) and nonresonant
processes, respectively.

Let us consider a double (EUV + IR) pulse of the form

E (t) = EX (t) + EIR (t − τ ) , (2)

and its Fourier transform

Ê (ω) = ÊX (ω) + ÊIR (ω) eiωτ , (3)

where the first and the second terms correspond to the EUV
and IR pulses, respectively, and τ denotes the delay between
the pulses. In this case, neglecting resonant excitation from the
ground state by an IR photon [i.e., ÊIR(ωαi) ≈ 0 for any α],
Eq. (1) can be approximated by

cf = i
∑

α

μf αμαi

[
iπÊX(ωαi)ÊIR(ωf α)eiωf ατ + Pr

∫ ∞

−∞

ÊX(ωf i − ω)ÊIR(ω)eiωτ + ÊX(ω)ÊIR(ωf i − ω)ei(ωf i−ω)τ

ωαi − ω
dω

]
(4)

= i
∑

α

μf αμαi

[
iπÊX(ωαi)ÊIR(ωf α)eiωf ατ + Pr

∫ ∞

−∞
ÊX(ωf i − ω)ÊIR(ω)eiωτ

(
1

ωαi − ω
− 1

ωf α − ω

)
dω

]
. (5)

When the two pulses overlap (τ = 0),

cf = i
∑

α

μf αμαi

[
iπÊX(ωαi)ÊIR(ωf α) + Pr

∫ ∞

−∞
ÊX(ωf i − ω)ÊIR(ω)

(
1

ωαi − ω
− 1

ωf α − ω

)
dω

]
. (6)

Thus, both the first (resonant) and second (nonresonant) terms
contribute to cf , leading to an additional phase and to a
photoelectron angular distribution (PAD) different from the

one expected from the scattering phase shifts. With increasing
delay, factors eiωf ατ and eiωτ begin to oscillate, and the PAD
changes with τ .
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For large delay, Eq. (5) can be transformed, after some
algebra, into

cf = −π
∑

α

μf αμαi[1 + sgn(τ )]ÊIR(ωf α)ÊX(ωαi)e
iωf ατ ,

(7)

where we have used the relationship

Pr
∫ ∞

−∞

eiωτ

ω0 − ω
dω = −iπeiω0τ sgn (τ ) . (8)

If the EUV spectrum is located within the Rydberg manifold,
a Rydberg wave packet is formed by the EUV pulse and
then ionized by the IR pulse. The factor eiωf ατ describes the
evolution of the Rydberg wave packet with increasing delay τ .
The ionization yield |cf |2 changes with τ , reflecting the
Kepler-like motion of the Rydberg wave packet, while the
PAD only slightly changes (nearly constant) with τ . There
is no ionization (cf = 0) if the IR pulse precedes the EUV
pulse (τ < 0), as is evident if one considers the time domain.
Apparently, Eq. (7) indicates that there are only resonant
paths, which might sound obvious again in the time-domain
consideration. It should be noticed, however, that the second
term in the sum in Eq. (7) originates from the second term
in Eq. (6), which is usually interpreted as nonresonant paths.
This observation implies that the attribution of resonant and
nonresonant processes may be somewhat arbitrary.

In the above-threshold case, where the EUV spectrum lies
above the ionization threshold, the two-photon ionization yield
vanishes if the two-pulses are separated in time. This intuitively
obvious result can be shown as follows: Assuming that the
transition matrix elements in Eq. (7) are almost constant within
the bandwidth of the pulses, one finds

cf ∝
∫ ∞

−∞
ÊIR(ωf α)ÊX(ωαi)e

iωf ατ dωα. (9)

After some algebra using Parseval’s theorem,∫ ∞

−∞
f̂ (ω) ĝ (ω) dω =

∫ ∞

−∞
f (t) g (−t) dt, (10)

one obtains ∫ ∞

−∞
ÊIR(ωf α)ÊX(ωαi)e

iωf ατ dωα

=
∫ ∞

−∞
EX(t)EIR(t − τ )e−iωf i τ dt, (11)

which vanishes if the EUV and IR pulses do not overlap each
other at all, i.e., EX(t)EIR(t − τ ) = 0 for any t .

III. NUMERICAL SOLUTION OF TIME-DEPENDENT
SCHRÖDINGER EQUATION

In the numerical calculations discussed below, we consider
the case where the EUV photon energy is slightly below
the ionization threshold. We choose the following basic
parameters of the pulses which are rather common in recent
experiments: the IR pulse with the carrier frequency ωL =
1.55 eV (800 nm) has a duration of 30 fs (full width at
half maximum, or FWHM, of intensity). The peak intensity
of the IR field is 1010 W/cm2 which is sufficiently low to

guarantee that only one IR photon is absorbed in ionization.
The duration of the EUV pulse is 8 fs (FWHM of intensity),
typical of a coherence time of an EUV FEL pulse [24]. The
time delay between maxima of the pulses is varied from 0
(complete overlap of the pulses) to 160 fs at most. The EUV
photon energy �ωX is chosen to be by 0.2 eV smaller than the
ionization potential Ip of each atom, i.e., the excess energy
Eex ≡ �ωX − Ip is −0.2 eV.

We assume that both the EUV and IR pulses are linearly
polarized along the z direction. The photoelectron angular
distribution from two-photon ionization is given by [45]

I (θ ) = σ

4π
[1 + β2P2(cos θ ) + β4P4(cos θ )], (12)

where σ is the total cross section, θ is the angle between
the laser polarization and the electron velocity vector, and
β2 and β4 are the anisotropy parameters associated with the
second- and fourth-order Legendre polynomials, P2(x) and
P4(x), respectively.

Although in principle it would be possible to calculate PADs
by using the analytical expression given in the previous section,
it would be very complicated to perform an integration over
all the bound and continuum intermediate states. Instead, it
is easier and more straightforward to numerically solve the
time-dependent Schrödinger equation and to obtain from its
solution the amplitudes of photoionization and then cross
sections, angular distributions, etc. The TDSE in the dipole
approximation and the length gauge, describing the evolution
of an atom under the action of two-color pulses, is written as

i
∂�(r1, . . . ,rn,t)

∂t
=

[
Ĥe(r1, . . . ,rn) −

n∑
i

zi[EX(t)

+EIR(t − τ )]
]
�(r1, . . . ,rn,t), (13)

where �(r1, . . . ,rn,t) denotes the wave function of the atom
and Ĥe(r1, . . . ,rn) denotes the field-free atomic Hamiltonian.

We exactly solve the TDSE (13) for H and He, while we
make some additional approximations for the case of multi-
electron atoms (Ne and Ar). Below we briefly summarize the
numerical methods applied in this paper.

A. Hydrogen atom

For a hydrogen atom the TDSE (13) is reduced to

i
∂�(r,t)

∂t
=

[
− 1

2
∇2 − 1

r
− z[EX(t) + EIR(t − τ )]

]
×�(r,t). (14)

Equation (14) is numerically integrated by using the alternating
direction implicit (Peaceman–Rachford) method [13,17,46–
53]. Sufficiently long (typically a few times the pulse width)
after the pulse has ended, the ionized wave packet moving
outward in time is spatially well separated and clearly
distinguishable from the nonionized part remaining around the
origin. We calculate the parameters β2 and β4 by integrating
the ionized part of |�(r)|2 over r and φ.

For the case of s-shell ionization (H and He) by two
dipole photons, the angular distribution of photoelectrons
is determined by the interference of the S and D wave
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packets [27,28],

I (θ ) ∝ |c̃Se
iδ0Y00 − c̃Deiδ2Y20|2, (15)

where Y00 and Y20 are spherical functions, c̃S and c̃D are
real numbers that have the same absolute values as complex
amplitudes cS and cD , respectively, and δl is the phase of the
partial wave, or the apparent phase shift. The apparent phase
shift difference,

δ ≡ δ0 − δ2 = δsc + δex, (16)

consists of a part δsc intrinsic to the continuum eigenfunctions
(scattering phase shift difference), which has previously been
studied both theoretically [54–56] and experimentally [38],
and the extra contribution δex = arg cS/cD from the competi-
tion of the resonant and nonresonant paths. One obtains the
amplitude ratio W ≡ c̃S/c̃D and the phase-shift difference δ

from the anisotropy parameters by using the relations [27,28]

β2 = 10

W 2 + 1

[
1

7
− W√

5
cos δ

]
, β4 = 18

7(W 2 + 1)
. (17)

It should be noted that the values of β2, β4, W , and δ

obtained as above are integrated over photoelectron energy.
We calculate, on the other hand, energy-resolved values from
cS and cD obtained by directly projecting the S and D partial
waves onto the Coulomb wave functions.

B. Helium atom

To describe the photoionization of the He atom we use
direct numerical solution of the full-dimensional two-electron
TDSE in the length gauge [57]:

i
∂�(r1,r2,t)

∂t
= {He + (z1 + z2)[EX(t) + EIR(t − τ )]}

×�(r1,r2,t), (18)

with the atomic Hamiltonian

He = −1

2
∇2

1 − 1

2
∇2

2 − 2

r1
− 2

r2
+ 1

|r1 − r2| . (19)

We solve Eq. (18) numerically by using the time-dependent
close-coupling method [57–61]. Similarly to the case of a
hydrogen atom, sufficiently long after the pulse has ended,
the ionized wave packet moving outward in time is spatially
well separated and clearly distinguishable from the nonionized
part remaining around the origin. We calculate photoelectron-
energy-integrated β2 and β4 by integrating the ionized part of
|�(r1,r2)|2 over r1, r2, θ2, φ1, φ2, from which one obtains W

and δ by solving Eqs. (17). We use the values of δsc from [56]
to calculate δex = δ − δsc.

C. Neon and argon atoms

For multi-electron atoms, such as Ne and Ar, a direct
numerical solution of Eq. (13) is impossible. In many cases it
is sufficient to solve the TDSE for one electron only (single-
active-electron approximation) ignoring electron-electron cor-
relations and the influence of external electromagnetic fields
on the other electrons [62–64]. In the present study we use
this approach for two-color photoionization of Ne and Ar. In
contrast to H and He cases, in Ne and Ar atoms the outermost

“active” electron has p symmetry and therefore it can be
initially in pσ (m = 0) and pπ (m = 1) states. Due to axial
symmetry of the problem, ionization of states with σ (m = 0)
and π (m = 1) symmetry can be considered independently
and then the obtained cross sections should be summed
incoherently.

Since the magnitude of the considered EUV field is com-
paratively low and its frequency is high, we use the first-order
perturbation treatment and the rotating wave approximation
(RWA) for the description of the EUV-pulse interaction with
the atomic p electron. Thus, we present the active-electron
wave function as the following sum:

�pm(r,t) = exp(−iεpt)φ(0)
pm(r) + φpm(r,t). (20)

Here, εp is the binding energy of the electron in the initial state,
φpm(r,t) describes a perturbation of the active electron wave
function due to interactions with the EUV field, and φ(0)

pm(r)
is the wave function of the active electron in the initial state.
Within the RWA, the TDSE for an active p electron can be
written as

i
∂φpm(r,t)

∂t
=

[
−1

2
∇2 + U (r) − zEIR(t − τ )

]
φpm(r,t)

− 1

2
zĒX(t) exp[−i(εp + ωX)t]φ(0)

pm(r),

(21)

where ωX and ĒX(t) denote the carrier frequency and the
envelope of the EUV pulse, respectively. The interaction of
the active electron with the ion core is taken into account
by the effective single-electron potential U (r). In the present
study for the atoms Ne and Ar we have used the Herman–
Skillman potential obtained within the Hartree–Slater approx-
imation [65]. To solve Eq. (21) we used a method based on
the expansion of the wave packet φpm(r,t) in partial waves.
The method is described in details in Refs. [63,64]. The
calculated double-differential cross section was further used
for calculating the asymmetry parameters βn as functions of
photoelectron energy.

IV. RESULTS AND DISCUSSION

A. Showcase of hydrogen atom two-photon
near-threshold ionization

In this section we discuss in detail the TPSI of a hydrogen
atom as a showcase, demonstrating all peculiarities of the pro-
cess of the two-color near-threshold ionization. The parameters
of the pulses are given in Sec. III. In addition, the peak EUV
intensity is set to 106 W/cm2 (the process under consideration
is basically linear in EUV intensity). The time delay between
the pulse peaks is varied from 0 (complete overlap) to 160 fs
where the IR pulse is completely separated from the preceding
EUV pulse.

Figure 1 illustrates how the photoelectron energy spectrum
varies with the delay between the pulses in false-color
representation. Figure 2 plots the spectra for several values
of delay from 0 to 80 fs. The results are shown for the
EUV photon energy of 13.405 eV, which is 0.2 eV below
threshold (Eex = −0.2 eV). In these figures, the kinetic-energy
positions Ekin = ωL − 1

2n2 (n = 5, . . . ,9) corresponding to a
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FIG. 1. (Color online) False-color representation of photoelec-
tron energy spectra as a function of time delay for the case of the
H atom. Above the top axis, the energy positions corresponding to a
single IR photon ionization from each of 5p–9p levels are indicated
with vertical arrows. The white solid line shows the Kepler orbit time
corresponding to Ekin − �ωL (see text).

single IR photon ionization from each of the 5p–9p levels
are indicated with vertical arrows. At τ = 0 where the two
pulses overlap each other, resonant peaks are embedded in
a broad spectrum due to nonresonant processes, centered at
Ekin = �ωX + �ωL − Ip(H) = �ωL + Eex = 1.35 eV. With
increasing delay, the spectrum is dominated by resonant
peaks, and the components between the peaks exhibit a clear
interference pattern that is related to the evolution of the
Rydberg wave packet created by the EUV pulse. The white
solid line in Fig. 1 plots the nominal Kepler orbit time,

τn = 2πn3, (22)
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FIG. 3. Photoelectron yield from H atom as a function of time
delay.

corresponding to a Rydberg state with the principal quantum
number n from which the photoelectron energy is achieved
through an IR photon absorption, i.e., Ekin = ωL − 1

2n2 . One
can see that this line indeed coincides with the first interference
maximum. Due to this Rydberg-wave-packet dynamics, the
two-photon ionization yield integrated over the photoelectron
energy Ekin oscillates with the delay (Fig. 3).

We show in Fig. 4 the extra phase shift difference δex as
a function of time delay and photoelectron energy in false-
color representation. While δex is finite at zero delay, it varies
with increasing delay and vanishes at large delay within the
energy range (1.0 eV � Ekin � 1.5 eV) of photoelectrons, as
predicted in Sec. II. Figure 5 plots the dependence of δex and W

on photoelectron energy for τ = 0. In the low-energy part, they
oscillate, reflecting changing relative contributions of resonant
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FIG. 4. (Color online) False-color representation of the extra
phase shift difference δex as a function of time delay and photoelectron
energy for H atom. Above the top axis, the energy positions
corresponding to a single IR photon ionization from each of 5p–9p

levels are indicated with vertical arrows.
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and nonresonant paths, whereas they are nearly constant in the
high-energy part (�1.3 eV) for which Ekin − �ωL lies in the
Rydberg manifold whose level spacing is much smaller than
the spectral width.

One can see from Fig. 4 that the variation of δex with
increasing delay is not necessarily monotonic. To take a closer
look at this, we plot the delay dependence of δex for several
photoelectron energies in Fig. 6. For 1.16, 1.28, and 1.34 eV
with a single dominant intermediate state (6p,7p, and 8p,
respectively), δex decreases monotonically and tends to zero.
On the other hand, for 1.30 eV where paths from 7p and 8p

interfere with each other, δex first decreases to a negative value
before increasing again to zero. The extra phase shift difference
δex exhibits even more peculiar behavior at 1.22 and 1.32 eV,
where the photoelectron yield strongly oscillates with delay
(see Fig. 1); plotted within the range [−π,π ] (solid lines), δex
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FIG. 7. (Color online) Time-delay dependence of the energy-
integrated (a) asymmetry parameters β2 and β4, and (b) the relative
phase δ (left axis) and amplitude ratio W (right axis) in TPSI of
H atoms. Thin dashed curve in panel (b) shows the scattering phase
shift difference δsc = 2.274 (left axis).

jumps at a certain delay. Actually, if unwrapped with a modulus
of 2π (dashed lines), it increases monotonically to 2π . Small
kinks around τ = 60, 100, 140 fs for Ekin = 1.22 eV are due
to slight numerical instability stemming from vanishing cS

and/or cD , whose phases become undetermined.
Finally, we show the delay dependence of photoelectron-

energy integrated asymmetry parameters β2 and β4 as well
as the amplitude ratio W and relative phase δ in Fig. 7. As
expected, all of them vary with delay and tend to constant
values. In particular, δ asymptotically tends to the scattering
phase shift difference (δsc = 2.274) or, equivalently, δex (=δ −
δsc) tends to zero.

B. Two-photon ionization of noble gas atoms

1. He atom

The case of He is of special interest since several mea-
surements of the PADs from two-color TPSI of He have
been reported [36,38–42]. Moreover, in Refs. [36,38,39] a
dependence of the PADs on the time delay between the
pulses were investigated. In Ref. [36], however, the time-
delay dependence was studied on the attosecond scale and
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is connected with the relative phase of the EUV and IR pulses
which is outside the scope of our investigation. On the other
hand, in Refs. [38,39] two-color TPSI of He atom in both the
below- and above-threshold cases was studied and no time-
delay dependence of the PADs on the femtosecond scale was
detected within experimental errors. At first sight this result
contradicts to our main thesis that the PADs should depend on
the delay between EUV and IR pulses. To clarify this situation
we performed accurate two-electron TDSE calculations for
the EUV photon energy which is 0.2 eV below the ionization
threshold. Due to limitation of the computation time we made
calculations for an IR pulse duration of 10 fs with a peak
EUV intensity of 1010 W/cm2 and all the other parameters
indicated in Sec. III. The results of calculations are shown in
Fig. 8 as solid curves. One sees that indeed the asymmetry
parameters β2 and β4 as well as the amplitude ratio W and
the relative phase δ between the S and D partial waves are
practically independent of the time delay, in agreement with
the experimental reports [38,39]. The value of δ is found to be
close to the scattering phase shift difference δsc = 2.696 [56].

4.0

3.5

3.0

2.5

2.0

1.5

1.0

β

403020100

Delay (fs)

β2

β4

(a) He

3.0

2.5

2.0

1.5

1.0

0.5

0.0

δ

403020100

Delay (fs)

1.0

0.8

0.6

0.4

0.2

W

(b) Heδ (left axis)

W (right axis)

FIG. 8. (Color online) Time-delay dependence of the energy-
integrated (a) asymmetry parameters β2 and β4, and (b) the relative
phase δ (left axis) and amplitude ratio W (right axis) in TPSI of
He atoms. Thick solid curves: two-electron TDSE simulations. Thick
dashed curves show single-active-electron TDSE simulations. Thin
dashed curve in panel (b) shows the scattering phase shift difference
δsc = 2.696 (left axis) [56].

We have also made calculations for the same parameters
within the single-active-electron approximation by using the
same TDSE code as for Ne and Ar. In this case the effective
single-electron potential was chosen as a screened Coulomb
potential with a polarization term:

U (r) = −2

r
− 1

r
(e−4r − 1) − 2e−4r − 9

32(r2 + 1.2)2
.

(23)

The results shown in Fig. 8 (dashed curves) are in good agree-
ment with a more elaborate calculation with the two-electron
TDSE. Moreover, we made single-electron calculations for a
longer IR pulse of 30 fs and found that the beta parameters for
He are practically independent of the IR pulse duration. Thus
we proved that, for He, in agreement with experiments [38,39],
the PADs are practically independent of the time delay between
the pulses. The He atom indeed represents a special case in
which the PAD barely varies with delay, accidentally, for the
particular combination of photon energies used.

In order to investigate this interesting case further we
calculated the electron spectra for different time delays
by using single-active-electron approximation. The spectra
integrated over emission angle are shown in Fig. 9. They
are marked by the numbers which indicate different relative
position of the maxima of the EUV and IR pulses as shown
in Fig. 10. Curve 1 corresponds to a complete overlap of the
pulses where their maxima coincide. Curve 9 corresponds to
another extreme case where the pulses are separated, the EUV
pulse acting first to the atom.

One can see from Fig. 9 that the photoelectron spectrum
strongly varies with the time-delay, in striking contrast to
β parameters. Its shape, position of the main maximum
and its width depend on the delay, reflecting the interplay
between resonant and nonresonant mechanism of ionization.
The variations of the spectra are qualitatively similar to the
case of the hydrogen atom (Fig. 2). When the delay is zero
(line 1), both resonant and nonresonant transitions contribute
(see Sec. II), the spectrum is broad with the maximum at
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FIG. 9. (Color online) The angle-integrated electron spectrum
for TPSI of He for the time delays shown in Fig. 10. The numbers near
the curves correspond to the numbers which mark different positions
of the EUV peak in Fig. 10.
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FIG. 10. (Color online) The electric field of the 30 fs IR pulse
(thin black curve) and the envelopes of the electric field of the EUV
pulses (thick colored curves) in arbitrary units for different time
delays. Numbers indicate the following delays between EUV and IR
pulses: 1 is 0 fs (complete overlap), 2 is 8.2 fs, 3 is 16.5 fs, 4 is 24.7 fs,
5 is 33 fs, 6 is 41.2 fs, 7 is 50.9 fs, 8 is 60.6 fs, and 9 is 70.2 fs (fully
separated pulses).

�ωL + Eex = 1.35 eV. Its width is mainly determined by that
(0.23 eV) of the shorter EUV pulse (8 fs). In the other extreme
case of nonoverlapping pulses (curve 9) particular Rydberg
states (presumably mainly 1s7p and 1s8p states [66]) are
resonantly excited by the EUV pulse, which are then ionized
by the IR pulse. The main maximum is redshifted since the
lower Rydberg states are predominantly populated. The width
of the peak is smaller since it is now determined mainly by that
(0.06 eV) of the longer IR pulse (30 fs). Small maximum on
the left side of the main peak corresponds to ionization through
excitation of the 1s6p Rydberg state. In the intermediate cases
of partial overlap of the pulses one observes gradual transition
to the pure resonant case with interference of ionization paths
via 1s6p, 1s7p, and 1s8p states.

The energy-resolved angular distributions calculated at
different parts of the spectrum are practically the same and
do not change in spite of the variation of the spectrum, which
leads to a practical independence of the β parameters from the
pulse overlap.

2. Ne and Ar atoms

In this section we present the simulation results for Ne and
Ar atoms. In both cases the EUV photon energy was chosen
to be 0.2 eV below the corresponding ionization thresholds.
In such a case, a group of Rydberg states is excited by the
EUV pulse, which is then ionized by an IR photon. For the
chosen energy of the IR photon (1.55 eV) one can expect
a group of photoelectrons with the energy about 1.35 eV. In
Fig. 11 we show the angle-integrated spectra of photoelectrons
from Ne calculated for different time delays between EUV
and IR pulses from complete overlap of the pulses (curve 1) to
fully separated pulses (curve 9). The numbers near the curves
correspond to the delays displayed in Fig. 10. As in the case
of H and He, the shape of the spectrum and its width strongly
depends on the delay. It is mainly determined by the interplay
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FIG. 11. (Color online) The same as in Fig. 9 but for 2p ioniza-
tion of Ne atoms.

of the resonant and nonresonant contributions to the ionization
as discussed above.

For all delays we have also calculated the energy depen-
dence of the asymmetry parameters β2, β4, and β6, where β6

is the next coefficient in the expansion of the PAD in terms of
Legendre polynomials. In all cases the latter parameter is at
least two orders of magnitude smaller than the first two. This
confirms that at the chosen IR intensity of 1010 W/cm2 only
one IR photon is absorbed. Together with the EUV excitation
it gives two-photon ionization with angular distribution of
photoelectrons described by Eq. (12). As an example in
Fig. 12 we show the photoelectron spectrum from Ne and β

parameters as functions of photoelectron energy for the case of
complete overlap of the EUV and IR pulses (case 1 in Fig. 10).
Interestingly, the parameters β2 and β4 are practically constant
in the region of maximum, changing their value only when the
cross section is small, which is consistent with the hydrogen
case (see Fig. 5). Similar behavior is observed for all other
delays.
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FIG. 12. (Color online) The electron spectra (in arbitrary units)
and evolution of the asymmetry parameters across the resonance for
zero time delay between EUV and IR pulses calculated for Ne atom.

023408-8



THEORETICAL STUDY OF PULSE DELAY EFFECTS IN . . . PHYSICAL REVIEW A 90, 023408 (2014)

0 20 40 60
Delay (fs)

-0.5

0.0

0.5

1.0

1.5
2

4

FIG. 13. (Color online) The calculated dependence of asymme-
try parameters β2 and β4 on delay between EUV and IR pulses for the
case of Ne ionization at EUV photon energy −0.2 eV below threshold.
The parameters are shown for the angular distribution integrated over
the peak. The points are connected by straight lines to guide the eye.

In Fig. 13 we show the calculated β2 and β4 parameters for
the angular distribution integrated over the peak, as usually
measured in real experiments. The parameters are shown as
functions of time delay. One sees that both parameters are
changing considerably with the delay. β4 even changes its
sign. This behavior was predicted theoretically and confirmed
by experiment in our recent publication [43].

Similar calculations have been done for Ar. The calculated
photoelectron spectra integrated over the emission angle
are presented in Fig. 14 for several delays between pulses.
Qualitatively, the spectra and their variation with the time
delay are similar to the cases of H (Fig. 2), He (Fig. 9),
and Ne (Fig. 11). This is natural since the properties of the
Rydberg states close to the threshold depend only weakly on
the properties of the core.

Figure 15 shows the values of β2 and β4 for the case
of Ar, calculated for various time delays. Similar to the Ne
case, the asymmetry parameters notably depend on the delay.
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FIG. 14. (Color online) Photoelectron spectra integrated over
emission angle for the time delays indicated in Fig. 10, calculated
for 3p ionization of Ar.
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FIG. 15. (Color online) Photoelectron angular distribution pa-
rameters β2 and β4 for photoionization of Ar atom as functions of
time delay. Numbers indicate the particular delays shown in Fig. 10.
The points are connected by straight lines to guide the eye.

Interestingly, in the Ar case the β4 parameter does not change
its sign unlike in the case of Ne. This difference is possibly
explained by different s and d excitation by the EUV pulse in
Ne and Ar [67].

According to our calculations the variation of the β2 and β4

parameters with time delay is much more pronounced for Ne
and Ar than for H and He atoms. Presumably, this is related
to the fact that, in Ne and Ar, the p electron is ionized. In
this case the PAD in two-photon ionization is defined mainly
by the contribution of P and F partial wave packets which
can give more space for beta variations. In particular, the β4

parameter in s ionization depends only on the ratio W of S and
D amplitudes [see Eqs. (17)], while in p ionization it depends
on both the amplitude ratio and relative phase of P and F

partial waves, which may be more sensitive to the contribution
of resonant and nonresonant pathways.

V. CONCLUSIONS

We have investigated theoretically the PADs for two-
color (EUV + IR) TPSI of H, He, Ne, and Ar atoms with
EUV excitation slightly below the ionization threshold. The
PADs for EUV + IR TPSI have recently been experimentally
measured with modern EUV FEL and high-harmonic sources.
We have shown that the photoelectron energy spectra as well as
anisotropy parameters β2 and β4 strongly depend on the time
delay between the EUV and IR pulses, except for β values
for the case of He. This dependence is associated with the
contributions of the resonant and nonresonant pathways of
ionization, changing with the pulse delay, which implies that
investigations of the time-delay dependence of the PADs in
TPSI make it possible to study the fundamental problem
of the interplay of resonant and nonresonant processes in
photoionization. Our results indicate that the variation of PADs
with the time delay is more pronounced for ionization of
p-shell electrons (Ne and Ar) than for s-shell electrons (H and
He). Surprisingly, the anisotropy parameters barely change
with delay for the case of He for the present combination of
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photon energies. This explains why the delay dependence was
not detected in Ref. [38].
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J. Feldhaus, H. W. van der Hart, P. Juranić, W. B. Li, M. Meyer,
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